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Abstract. A two-dimensional submerged body translating under a free surface with steady velocityU while
performing small oscillations with frequencyω is considered. It has been known for a long time that for a single
source the solution becomes unbounded at the critical frequency, which is given byτ = Uω/g = 1

4 whereg is the
acceleration of gravity. It was therefore believed that also the motion due to an oscillating body was unbounded
at this frequency. It has, however, in the last few years been shown that this motion is bounded forτ = 1

4. In

this paper previous results are discussed, and the strong variation of the forces with respect toω close toτ = 1
4

is examined. Recently, a mathematical argument was given that the motion at the critical frequency is bounded
for bodies with nonzero cross-section area. It is proved that also the motion generated by a thin foil with zero
cross-section area is bounded atτ = 1

4.
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1. Introduction

The problem of a body translating on or beneath a free surface while performing an oscil-
lating motion is of fundamental interest in marine hydrodynamics. This topic is of practical
importance to seakeeping of ships and in the study of wave loads on offshore structures and
devices for exploiting wave energy. The oscillations are often of small amplitudes such that the
conditions required for linearization of the problem are fulfilled. It is then appropriate to solve
the problem by the use of a Green function. For a body moving with a constant horizontal
velocity U , or equivalently, a body embedded in a uniform current−U , the Green function
due to an oscillating concentrated source is well known (Haskind [1], Wehausen and Laitone
[2]).

This Green function is, however, unbounded for a certain value of the frequencyω, cor-
responding to the non-dimensional numberτ = Uω/g = 1

4 whereg is the acceleration of
gravity. Physically speaking, in the two-dimensional case four waves are generated in the far-
field whenτ is less than1

4 (thek1-, k2-, k3- andk4-waves, defined in Equation (2.19)). Three
of these waves have negative group velocities and are located downstream. One of them, the
k2-wave, has positive group velocity and is located upstream. Whenτ → 1

4, two of the waves,
the k1- and thek2-wave, merge into one wave which has zero group velocity. This wave is
not able to transport wave energy and we get a wave cut-off such that the two merged waves
do not exist forτ > 1

4. The singularity in the Green function forτ = 1
4 has therefore two

causes: two of the waves merge into one which is expected to give a resonance situation, and
the resulting wave is not able to transport wave energy.
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220 Enok Palm and John Grue

The motion generated by a body of nonzero volume, oscillating or exposed to an incoming
wave, may be found by means of a distribution of sources located at the body surface. Since the
potential of a single source is unbounded atτ = 1

4, it was long believed that this is also true for
a body (e.g. Dagan and Miloh [3]). Uncertainty on this point has also been noted by,e.g., Wu
and Eatock Taylor [4] in three dimensions. Grue and Palm [5] found, however, for a submerged
circular cylinder in two dimensions that the motion and physical forces are bounded asτ →
1
4. The result was shown numerically as well as from the mathematical equations. Similar
numerical results were obtained by Mo and Palm [6] for a submerged elliptical cylinder and
by Grue, Mo and Palm [7] for a submerged foil.

Liu and Yue [8] brought the theory an important step forwards. They were able to show
in two dimensions that the motion atτ = 1

4 is bounded for a submerged body of arbitrary
form, provided that the body has a nonzero cross-section area. They also extended their theory
to floating two-dimensional bodies and three-dimensional submerged bodies. The paper was
followed up by a new paper, Liu and Yue [9] where their result on the motion being finite
at τ = 1

4, is coupled to the study of the time dependence of the wave resistance of a body
starting from rest. It is known that, if the motion is started impulsively from rest to a constant
translating velocity, the transient Green function decays slowly,viz. ast−1/2 in two dimensions
andt−1 in three dimensions, wheret is time. The reason for this slow decay is the occurrence
of the singularity at the frequency corresponding toτ = 1

4. It is shown in that paper that for
bodies with nonzero volumes the transient motion decays an order faster: ast−3/2 andt−2 in
two and three dimensions, respectively. For bodies of zero volume they find that the decay is
of the same order as for the single source, however.

We now return to the problem in the frequency domain with submerged bodies in two
dimensions. There are still shortcomings with the mathematical description of the physical
problem forτ close to1

4. These shortcomings have prompted this contribution and are shortly
described as follows: The first relates specifically to the work by Liu and Yue [8] who claim
that a finite solution exists if and only if the cross-section area is nonzero. We prove here that
a finite solution of the problem exists for the motion near the singularity also when the body
has zero cross-section area, namely for a thin two-dimensional foil. The result is indepen-
dent of the value of the velocity circulation around the foil. Secondly, for a body with finite
submergence the mathematical solution of the physical problem is bounded forτ = 1

4. This
solution tends, however, to infinity as the submergence of the body tends to infinity, as noted
by Zhang and Zhu [10]. Such a behaviour is, of course, meaningless from a physical point of
view. The latter authors argued that the problem can be avoided by incorporating the effect
of nonlinearity in the boundary conditions at the free surface (still with large submergence of
the body). The wavenumbersk1 andk2 then always differ, also atτ = 1

4 (see [3]), and the
singularity is removed.

Finally, we note that the physical problem has a discontinuity at the critical frequency, since
four travelling waves are present forτ < 1

4, while two of these disappear forτ > 1
4. This may

lead to quite rapid variations close toτ = 1
4. We show here that some of the (nonzero) physical

forces may have infinite derivatives with respect toω at the point.
The paper is organized as follows: In Section 2 we provide the mathematical and phys-

ical background of the problem. Section 3 is a review which connects previous findings for
submerged bodies of finite cross-section area. The variation of the forces with respect toω

close toτ = 1
4 is also considered. In Section 4 we provide a rigorous mathematical argument
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The wave field of a moving body performing oscillations221

that a finite solution also exists for a body of zero cross-section area. Finally, Section 5 is a
conclusion.

2. Mathematical formulation

We consider a body in two dimensions performing small oscillations in heave or sway with a
frequencyω, embedded in a uniform current beneath a free surface. There may in general also
be an incoming wave of the same frequency. All equations will be linearized. One frequently
used approach for solving this type of problems is to apply a source distribution over the
body surfaceS. Making use of the proper Green function and utilizing the body boundary
conditions, we end up with a Fredholm integral equation of the second kind. In the case of
a circular cylinder the equation may be solved analytically as well as numerically. Following
[5] the coordinates are taken with the origin in the mean free surface of the fluid. Thex-axis is
horizontal and they-axis positive upwards. Unit vectorsex andey are introduced accordingly.
The fluid is assumed incompressible and the motion irrotational. The fluid velocity may then
be written

v = ∇8− Uex, (2.1)

where8 is a velocity potential andU the speed of the current, directed along the negative
x-axis. The solution of the problem is divided into one steady solution and one oscillating
part. We therefore write

8 = −UX(x, y) + ϕ(x, y, t), (2.2)

wheret denotes time. The potentialϕ(x, y, t) satisfies the two-dimensional Laplace equation

∇2ϕ = 0. (2.3)

The fluid layer will be assumed to be of infinite depth. The boundary condition aty = −∞ is
then

∇ϕ = 0 (y = −∞). (2.4)

We shall assume that the boundary conditions may be linearized, which means that the os-
cillatory motion is small. Furthermore, we neglect the effect ofX(x, y) in the free-surface
boundary condition, which is a good approximation if the body is either slender or not close
to the free surface (see Zhao and Faltinsen [11]). This gives(

∂

∂t
− U ∂

∂x

)2

ϕ + g ∂ϕ
∂x
= 0 (y = 0), (2.5)

whereg is the acceleration of gravity. The kinematic boundary condition applied at the mean
position of the body surfaceS can be written

∂ϕ

∂n
= p(x, y), (2.6)

wheren is the normal vector of the body, defined positive into the fluid, andp(x, y) is related
to the body oscillation and the steady potentialX (seee.g. Newman [12], Equation (3.28) or
[5], Equation (2.12)).
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222 Enok Palm and John Grue

The potential is properly divided into two parts

ϕ = ϕ0+ ϕ1, (2.7)

whereϕ0 is the potential of a possible incoming wave. We shall assume sinusoidal time
dependence with period 2π/ω. Introducing complex variables we write

ϕ = Re[fc(z) cosωt + fs(z) sinωt], (2.8)

wherefc(z) andfs(z) are analytic functions of

z = x + iy (2.9)

andi is the imaginary unit. We may write Equation (2.8) in shorter notations by introducing a
new imaginary unitj , independent ofi and connected to the time variable so that

ϕ = RejReif (z)exp(jωt). (2.10)

Here Rei and Rej denote the real part with respect toi andj , respectively;f (z) is given by

f (z) = fc(z)− jfs(z). (2.11)

Corresponding to (2.10) we write

ϕ0 = RejReif0(z)exp(jωt), ϕ1 = RejReif1(z)exp(jωt), (2.12)

with

f (z) = f0(z)+ f1(z), (2.13)

wheref0(z) is the known complex potential for the incoming wave andf1(z) is the unknown
complex potential due to the presence of the body.

The potentialf1(z), which must satisfy the radiation conditions atx = ±∞ and the
boundary conditions aty = 0 andy = −∞, is then written

f1(z) =
∫
S

σ (s)Gσ (z, ζ(s))ds. (2.14)

HereGσ(z, z0) is the Green function for the problem,i.e. the velocity potential due to a
concentrated source at the pointz0 embedded in the current and oscillating with a frequency
ω. Furthermore, the contour is determined byz = ζ(s) wheres is the arclength, andσ(s)
is the (unknown) source strength being real with respect toi, but complex inj . The Green
function is given by

Gσ(z, z0) = 1

2π
[log(z− z0)− g(z, z0)], (2.15)

where

g(z, z0) = log(z− z0)+ 1− ij
(1− 4τ)1/2

[F1(z, z0)− F2(z, z0)]

+ 1+ ij
(1+ 4τ)1/2

[F3(z, z0)− F4(z, z0)], (2.16)
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The wave field of a moving body performing oscillations223

Fn(z, z0) = exp(−iknz)
∫ z

Cn

exp(iknu)

u− z0
du (n = 1,2,3,4). (2.17)

The functiong(z, z0) is non-singular in the fluid (except atτ = 1
4); a bar denotes complex

conjugate andCn is defined by

Cn = ∞ (n = 1,3,4), C2 = −∞
(For τ > 1/2: C1 = i∞/k1, C2 = i∞/k2). (2.18)

The wavenumbers are determined by

k1,2 = ν

2τ2
[1− 2τ ± (1− 4τ)1/2], k3,4 = ν

2τ2
[1+ 2τ ± (1+ 4τ)1/2], (2.19)

where

ν = ω2

g
, τ = Uω

g
. (2.20)

The integral equation becomes (see [5])

σ(s′)+ 1

π

∫
s

σ (s)L(s′, s)ds = H(s′), (2.21)

where

L = Imi

{
dζ(s′)

ds′

(
1

ζ(s′)− ζ(s) −
1

ζ(s′)− ζ(s)

+ i + j
(1− 4τ)1/2

(k1F1(ζ(s
′), ζ(s))− k2F2(ζ(s

′), ζ(s)))

+ i − j
(1+ 4τ)1/2

(k3F3(ζ(s
′), ζ(s))− k4F4(ζ(s

′), ζ(s)))
)}
, (2.22)

and

H(s′) = 2
∂ϕ(s′)
∂n
− 2Imi

(
f ′0(ζ(s

′))
dζ(s′)

ds

)
(2.23)

which is known.
It is noted from (2.15)–(2.19) that the Green function gives rise to waves with wavenumbers

k1, k2, k3 andk4. From (2.19) it follows that forτ < 1
4 all four wavenumbers are real. Thek1-,

k3- andk4-waves then have negative group velocities and propagate downstream, whereas the
k2-wave with positive group velocity propagates upstream (see Equation (3.8)). Asτ ↑ 1

4, the
k1-wave and thek2-wave merge into one wave with zero group velocity. These two effects,
the merging of the two waves and the fact that their joint group velocity becomes zero such
that no wave energy can be transported away, cause the Green function to become infinite at
τ = 1

4.
For τ > 1

4, the wavenumbersk1 andk2 become complex and the waves disappear. The
wavenumbersk3 andk4 are real and these waves still exist.
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224 Enok Palm and John Grue

3. Submerged body

3.1. CIRCULAR CYLINDER

As noted in the Introduction, it was long accepted in the literature that also the (linearized)
velocity potential generated by an arbitrary body is infinite atτ = 1

4 (e.g. [3]). This may seem
reasonable, since the solution may be given as a distribution of sources over the body surface.
It was shown, however, by Grue and Palm [5], numerically as well as from the mathematical
equations, that for a submerged circular cylinder the source strengthσ and the far field ampli-
tudes of all four waves are finite asτ → 1

4. The variation ofσ and some physical forces with
respect to the frequency of oscillation, was, however, often found to be rapid near the critical
point.

It is of interest to closer examine the variation of the forces atτ = 1
4. The pressure force

on the body in the radiation problem has the form

F = RejPexp(jσ t), (3.1)

where in sway the force may be written by

P= (µ̂11− j λ̂11)ex + (µ̂21− j λ̂21)ey, (3.2)

and in heave by

P= (µ̂12− j λ̂12)ex + (µ̂22− j λ̂22)ey. (3.3)

Hereµ̂mn andλ̂mn are real, being the components of the added-mass force and the damping
force, respectively. Non-dimensional forces are obtained by

µmn = µ̂mn/ρgRεb, λmn = λ̂mn/ρgRεb, (3.4)

whereρ is the density,R the radius of the circular cylinder andεb the amplitude of the body
oscillation. The damping coefficientŝλ11 andλ̂22 may be determined by the energy equation
in the form (see [5])

D = ρg

2εb

{(
a2

1

k1
+ a

2
2

k2

)
(1− 4τ)1/2+

(
−a

2
3

k3
+ a

2
4

k4

)
(1+ 4τ)1/2

}
τ 6 1

4,

D = ρg

2εb

{(
−a

2
3

k3
+ a

2
4

k4

)
(1+ 4τ)1/2

}
τ > 1

4,

(3.5)

whereD denoteŝλ11 in the sway motion and̂λ22 in the heave motion. Furthermore,ai (i =
1,2,3,4) are the wave amplitudes (of the elevation) in the far field. These equations are valid
for an arbitrary two-dimensional body.

It is seen immediately from the formula thatλ̂11 and λ̂22 are finite and continuous at
τ = 1

4, sinceai are finite. By taking the derivative of (3.5) with respect toω, we obtain
that the derivatives of̂λ11 and λ̂22 become−∞ for τ ↑ 1

4 and finite forτ ↓ 1/4, provided
that a1, a2 6= 0. (If a1 anda2 are zero we have∂D/∂ω = 0 at τ = 1

4.) These results are
confirmed numerically for a circular cylinder for different values of the Froude number and
submergences of the body in [5] and by Grue [13] who also has obtained the off-diagonal
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The wave field of a moving body performing oscillations225

Figure 1. Added-mass and damping forces,U
√
gR = 0·4, d/R = 2. Adapted from [13].

damping forceλ21 and the added-mass forcesµ11, µ21 andµ22. His results are displayed in
Figures 1(a,b, and c). It is seen that all quantities are finite and continuous atτ = 1/4. It
is in particular noted thatµ11, λ21 andµ22 have a cusp at the critical point. In this example
µ12 = −µ21, λ12 = −λ21, see [13]. (The parameterd in Figure 1 denotes the submergence of
the cylinder centre.)

A similar result is obtained for the mean horizontal second-order force in the radiation
problem,Fx , from the momentum equation ([5])

Fx = −E2

c2
c′g2
+ E1

c1
c′g1
+ E3

c3
c′g3
+ E4

c4
c′g4
, (3.6)

where

Ei = 1
2ρga

2
i (i = 1,2,3,4), (3.7)

ci =
(
g

ki

)1/2

(i = 1,2,3), c4 = −
(
g

k4

)1/2

,

c′gi = 1
2ci − U (i = 1,2,3,4).

(3.8)

It follows from (3.6) thatFx is bounded and continuous atτ = 1
4. Furthermore, by taking

the derivative of (3.6) with respect toω we find that the derivative ofFx becomes infinite for
τ ↑ 1

4 and finite forτ ↓ 1
4. Also these results which are valid for an arbitrary two-dimensional

body, are confirmed numerically in [5] for a circular cylinder. (Ifa1 anda2 are zero we have
∂F x/∂ω = 0 atτ = 1

4.)

3.2. SUBMERGED BODY OF ARBITRARY FORM

We now consider a submerged two-dimensional body of arbitrary cross-section. We first note
that radiated and scattered waves from a submerged elliptical cylinder were discussed in [6],
using the methods described in the previous section. It was found in this paper that also for
this body atτ = 1

4 the motion and the source strength are bounded and that the derivative ofD

andFx with respect to the frequency has the same behaviour as found for the circular cylinder.
A simplified version of the integral equation (2.21)–(2.23), valid near the critical point, was
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226 Enok Palm and John Grue

derived. In a slightly more developed form this equation may be written

σ(s′)+ 2k

δ
[(nx(s′)+ jny(s′))exp(−jkζ(s′))]

∫
S

σ (s)exp(jkζ (s))ds

+
∫
S

σ (s)M(s, s′)ds +O(δ) = H(s′). (3.9)

Here

δ = (1− 4τ)1/2, k1, k2→ k = ω/U for τ → 1/4. (3.10)

Furthermore,nx andny are thex- andy-components of the normal vector of the body, and
M(s, s′) is the part of the Green function which is bounded atτ = 1

4. It was concluded from
(3.9) that, since the far-field amplitude for thek1- andk2-wave atτ = 1

4 is given by (see [5])

1

δ

∫
S

σ (s)exp(jkζ (s))ds,

this amplitude would be finite ifσ is finite. This is valid for submerged bodies of arbitrary
form.

An important contribution to the study of the effect of the singularity atτ = 1
4 was given

by Liu and Yue [8]. They derived a form of the integral equation similar to (3.9) and were
able to prove easily that in the two-dimensional caseσ is finite at the critical point forall
submerged bodies with non-zero cross-section area. Their proof is simply obtained by multi-
plying (3.9) with exp(jkζ(s′)) and integrating overS, whereby an expression for the integral∫
S
σ (s)exp(jkζ (s))ds is obtained. Substitution of this expression into (3.9) yields

σ(s′)− 2k(nx + iny)exp(−jkζ(s′))
δ + 2jk0

×
∫
S

σ (s)ds
∫
S

M(s, s′)exp(jkζ (s′))ds′ +
∫
S

σ (s)M(s, s′)ds

= H(s′)− (nx + iny)exp(−jkζ(s′))
δ + 2jk0

∫
S

H(s′)exp(jkζ (s′))ds′, (3.11)

where

0 =
∫
S

(−jnx + nz)exp(2ky(s))ds = 2k
∫
B

exp(2ky)dB. (3.12)

To obtain the latter integral we have used Gauss’s theorem, andB denotes the body section.
Equation (3.11) is (in our notations) the equation derived in [8].

We notice that, if0 6= 0, the equation is nonsingular atτ = 1
4. It is seen from (3.12) that

0, which is a function of the frequencyω, is only zero when the cross-section area is zero. It
was also shown in [8] that, if0 6= 0, the velocity potentialf1(z) is bounded atτ = 1/4, also
for x →±∞. However, from Equations (3.11) and (3.12) is drawn the strong conclusion that
the necessary and sufficient condition for a finite solution to exist atτ → 1

4, is that0 6= 0. As
will be shown in the next section, this statement is not a necessary condition.
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The wave field of a moving body performing oscillations227

Reference [8] also considers a two-dimensional surface-piercing body and a submerged
body in three dimensions. In the former case a sufficient condition for the solution to be
bounded is derived, and in the latter case a criterion similar to that found in two dimensions is
obtained.

It is seen, however, from (3.12) that0 is proportional to exp(−2kd) whered is the sub-
mergence of the cylinder centre. Hence, whenτ → 1

4, the far-field amplitudes become
proportional to exp(kd)(see [8], Equation (5.13)) which implies that a deeply submerged
body results in large effects at the free surface. The reason for this is most likely a resonance
effect. This is an unphysical result and makes the model invalid for deep submergences, as
pointed out by Zhang and Zhu [10]. These authors therefore propose to solve the problem
by introducing nonlinear effects. They exploit a quasi-linear model using a Green function,
originally derived by Dagan and Miloh [3], which satisfies the free-surface condition up to
third order in the amplitude. The wavenumbersk1 andk2 then always differ, and the Green
function becomes regular atτ = 1

4. The theory is quasi-linear the sense that nonlinear effects
are only introduced in the derivation of the Green function. By this method they obtain that
the wave motion set up at the free surface by a deeply situated bodydecaysexponentially with
the submergence of the body atτ = 1

4 which is a reasonable result.
We are led to the conclusion that the theories based on linearized equations,e.g. [5] and

[8], are not valid for bodies which are situated close to the free surface due to the requirement
of linear free boundary condition, nor are they valid for deeply situated bodies due to the
resonance effect. It is believed, however, that for moderate submergence of the body the
theories give useful approximations.

The theory of Zhang and Zhu has the merit that, in principle, it becomes better the deeper
the body is situated. It may, however, be objected to their theory that, even though the Green
function satisfies the free surface boundary condition up to third order in the small parameter
ε, this may not be true for the velocity potential. Hence we believe that their Green function
may be replaced by another Green function having the merit that, forε → 0, the classical
Green function is recovered, and for deeply submerged bodies the wave motion at the free
surface decays rapidly with the depth of the body.

In [10] the theory is applied to submerged circular cylinders and the results are compared
with those obtained in [5]. The authors choose their small parameter asε = R/d and consider
first the far-field amplitudes forε = 0·5 and Froude numberF = U/√gR = 0·4 and 1. The
agreement is fairly good, except very close toτ = 1

4. They claim, however, that the agreement
becomes better for greater submergences. This seems reasonable sinceε is assumed small
in both theories. They also compare the damping forceD for F = 0·4 andε = 0·5 and
1
3. The agreement is good forε = 0·5, except close toτ = 1

4. For ε = 1
3, the curves are

virtually identical right up to resonance. These results suggest that for moderate submergence
the linearized theory give reliable values for the physical forces, also very close toτ = 1

4. For
small submergences, nonlinear effects may become important, especially close to the critical
point.

4. Submerged two-dimensional body of zero cross-section

We now consider a thin oscillating foil submerged in a uniform current under a free surface. A
thin moving foil may be used to extract wave energy for propulsion of ships, and the motion
near the critical frequency is of practical interest. It is assumed that the foil has a small camber
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228 Enok Palm and John Grue

and angle of attack. For the oscillatory part of the flow the effects of camber and thickness are
only secondary and the foil may mathematically be replaced by a flat plate. Furthermore, the
amplitude of the oscillations of the foil and the amplitude of the incoming waves are assumed
small. Hence, the boundary conditions at the free surface and at the foil may be linearized,
even if the foil is placed close to the free surface.

Usually, in modelling the flow at a thin foil, the Kutta condition is applied at the trailing
edge to determine the velocity circulation. Here we consider the more general case where the
circulation may be arbitrary, which includes the case of a bounded velocity at the trailing edge.

Coordinates are taken as in Section 2, with the origin located above the center of the foil.
We may also use the same formalism as in the previous sections and write

v = ∇ϕ − Uex. (4.1)

In the present case we may setX(x, y) = 0. The potentialϕ satisfies the Equations (2.3)–(2.5)
and we also make use of (2.7)–(2.13). The boundary conditions at the body is, however, now
given by

∂ϕ

∂y
=
(
∂

∂t
− U ∂

∂x

)
ζ (y = −d, |x| < l), (4.2)

whereζ(x, t) denotes the vertical displacement of the foil and 2l andd are the chord length
and depth, respectively.

This problem, a foil submerged in a uniform flow beneath a free surface, was discussed by
Grue, Mo and Palm [7] in the context of exploiting water waves for propulsion of ships. Fol-
lowing this paper we derive an integral equation for the motion by expressingf1(z) (defined
by (2.12)) as a continuous distribution of vortices. The velocity circulation around the foil
will oscillate in time due to the periodic motion of the foil or the harmonic incoming waves.
Hence, vortices will be shed at the trailing edge, and a vortex wake will be formed behind the
foil, extending from the trailing edge tox = −∞ as time goes towards infinity. In the first
approximation the wake may be considered to be located along the liney = −d, andf1(z) is
therefore expressed as an integral fromx = −∞ to x = l. LetGγ (z, z0) denote the complex
potential for a vortex of strength unity located atz = z0. ThenGγ (z, z0) fulfills the boundary
condition at the free surface, the radiation conditions atx = ±∞ and (2.4) aty = −∞. We
may then writef1(z) by

f1(z) =
∫ l

−∞
γ (ξ)Gγ (z, ξ − id)dξ . (4.3)

Gγ (z, z0) was derived in [7] by an analogous procedure as used in [1] in deriving the Green
function for a source. It was found that

Gγ (z, z0) = 1

2πi
[log(z− z0)+ g(z, z0)], (4.4)

whereg(z, z0) is nonsingular in the fluid (except atτ = 1
4) and defined by (2.16)–(2.20). In

this problemγ = 1u where1 denotes the difference between the lower and upper value
along the cut−∞ < x < l, y = −d, andu is the horizontal velocity. The velocity circulation
around the foil is then given by

0s =
∫ l

−l
γ (x)dx (4.5)
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The wave field of a moving body performing oscillations229

and the vortex strengthγ in the wake by

γ = γ0 exp(jkx), k = ω/U, (4.6)

whereγ0 is a complex constant with respect toj . The velocity circulation0s is associated
with γ0 by

jω0s = −Uγ0 exp(−jkl). (4.7)

The integral equation determiningγ may be transformed to a Fredholm equation of second
kind [7, Equation (3.25)]

γ (x) = 1

π2
(l2− x2)−1/2

(
–
∫ l

−l
(l2− η2)1/2

x − η [H(η)+ F(η)]dη + π0s
)
, (4.8)

where a bar through the integral sign indicates the principal value,H(η) is obtained by
multiplication of (2.23) with−π , andF(x) is given by

F(x) = F0(x)− γ0

∫ −l
−∞

exp(jkξ)K(x, ξ) dξ −
∫ l

−l
γ (ξ)K(x, ξ)dξ. (4.9)

Here

F0(x) = γ0

∫ −l
−∞

exp(jkξ)

x − ξ dξ, (4.10)

K(x, ξ) = −Rei
∂g

∂z
(z, ξ − id), z = x − id. (4.11)

(Note thatg(z, z0) here has opposite sign of that in [7].) Nearτ = 1
4, the kernelK(x, ξ) may

be written

K(x, ξ) = A

δ
exp(−jk1(x − ξ))+K1(x, ξ)+O(δ), (4.12)

where

A = 2πk1 exp(−2k1d), δ = (1− 4τ)1/2, (4.13)

andK1(x, ξ) is the regular part ofK(x, ξ). Equation (4.8) may then be written

γ (x) = 1

π2
(l2− x2)−1/2

×
{
− AR

δ
–
∫ l

−l
(l2− η2)1/2

x − η exp(−jkη)|,dη + –
∫ l

−l
(l2− η2)1/2

x − η

×
(∫ l

−l
−γ (ξ)K1(η, ξ)dξ +H(η)+ F0(η)+ F̃1(η)

)
dη − π0s

}
, (4.14)

where

R =
∫ l

−∞
exp(jk1x)γ (x)dx =

∫ l

−l

[
exp(jk1x)− k

k + k1
exp(−jk1l)

]
γ (x)dx,

F̃1(x) = −γ0

∫ −l
−∞

exp(jkξ)K1(x, ξ)dξ.

(4.15)
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To obtain a nonsingular equation, we multiply (4.14) by exp(jk1x) and integrate from−l to
l, which gives∫ l

−l
γ (x)exp(jk1x)dx = T1+ 0s

π

∫ l

−l
exp(jk1x)

(l2− x2)1/2
dx

−AR

π2δ

∫ l

−l
(l2− η2)1/2 exp(−jk1η) –

∫ l

−l
exp(jk1x)

(l2− x2)1/2(x − η) dx dη, (4.16)

where in the last term on the right the order of integration is changed.T1 is given by

T1 = 1

π2

∫ l

−l
exp(jk1x)

(l2− x2)1/2
–
∫ l

−l
(l2− η2)1/2

x − η

×
( ∫ l

−l
−γ (ξ)K1(η, ξ)dξ +H(η)+ F0(η)+ F̃1(η)

)
dη dx. (4.17)

Noting that ([14], Equations (44)–(47))∫ l

−l
(l2− η2)1/2 exp(−jk1η) –

∫ l

−l
exp(jk1x)

(l2− x2)1/2(x − η) dx dη

= jπ

l

∫ k1l

0
J0(κ)

∫ l

−l
(l2− η2)1/2 exp(−jκη)dη dκ

= jπ2l

∫ k1l

0

J0(κ)J1(κ)

κ
dκ

= jπ2l{k1l[J 2
0 (k1l)+ J 2

1 (k1l)] − J0(k1l)J1(k1l)}, (4.18)

we find that (4.16) reduces to∫ l

−l
γ (x)exp(jk1x)dx = T1− R

δ
jg1(k1l)+ J0(k1l)0s, (4.19)

where

g1(k1l) = 2πk1l exp(−2k1d){k1l[J 2
0 (k1l)+ J 2

1 (k1l)] − J0(k1l)J1(k1l)}, (4.20)

andJ0 andJ1 denote Bessel functions of the first kind of order zero and one, respectively.
We then subtract exp(−jk1l)0sk/(k + k1) from both sides of (4.19) and obtain

R

δ
(δ + jg1(k1l)) = T1+ 0s

(
J0(k1l)− k

k + k1
exp(−jk1l)

)
, (4.21)

giving

R

δ
= T1+ 0s[J0(k1l)− k exp(−jk1l)/(k + k1)]

δ + jg1(k1l)
. (4.22)
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By introducing (4.22) into (4.16) we obtain an integral equation where all terms are bounded
asδ→ 0, provided thatg1(k1l) 6= 0. To show thatg1(k1l) always is positive we first note that

x̂[J 2
0 (̂x)+ J 2

1 (̂x)] − J0(̂x)J1(̂x)

= (̂x − 1
2)[J 2

0 (̂x)+ J 2
1 (̂x)] + 1

2[J0(̂x)− J1(̂x)]2 > 0 for x̂ > 1
2. (4.23)

For 0< x̂ < 1
2, we have thatJ1(̂x) < x̂J0(̂x) which gives

x̂[J 2
0 (̂x)+ J 2

1 (̂x)] − J0(̂x)J1(̂x) > x̂J
2
1 (̂x) > 0 for 0< x̂ < 1

2. (4.24)

Sincek1l 6= 0 for τ → 1/4 it follows thatg1(k1l) 6= 0 for all values of the argument.
We have hereby shown that all terms in the integral equation are finite forδ → 0, even

though the cross-section area is zero. The mathematical arguments leading to (4.22) are in-
dependent of the circulation0s . The result is in conflict with the claim in [8] that a finite
solution exists asτ → 1/4 if and only if0 6= 0, i.e. the cross-section area is different from
zero. The reason for the disagreement is obviously that for bodies with zero cross-section area
the proper way of solving the problem is to use a distribution of vortices instead of sources.

It follows now immediately that the far-field amplitude is finite. From [7, Equations (5.2)–
(5.4)], using (4.22), we obtain for thek1-wave

a1 = R

δ

(
k1

g

)1/2

exp(−k1d), (4.25)

and a similar expression for thek2-wave. We may also use the energy equation (3.5) and the
momentum equation (3.6) to derive similar results for the behaviour of the damping forces and
the second order force at the critical point as for submerged bodies of nonzero cross-section.

Finally, asτ → 1
4, the velocity potentialf1(z) is given by

Reif1(z) = −R

δ
exp(k1(y − d − jx))+O(1). (4.26)

which shows that alsof1(z) is finite at the critical frequency.
It is noted from (4.20), (4.22), (4.25) and (4.26) that for deep submergence of the body,

the velocity potential and the far-field amplitude are proportional to exp(k1d), similar to what
was obtained for a body of finite cross-section. In the present case the body may be situated
close to the free surface, without violating the requirements for linarization of the problem.
We therefore conclude that the results obtained in this section are valid for bodies situated
near or at moderate distances below the free surface.

5. Conclusion

In the present study we consider the wave motion generated by a submerged two-dimensional
body, which is translating and performing small oscillations under a free surface. We focus
on oscillations with frequencies close to the critical frequency(τ = 1

4). It has been known
for some years that the motion due to a physical body is bounded at the critical frequency,
in contrast to the motion generated by a moving, oscillating singularity (source, dipole etc.).
Also the physical forces are bounded. Their variation with the frequency close toτ = 1

4 may,
however, be extremely rapid. Such behaviour has also been found experimentally by Maruo
and Matsunaga [15] in three dimensions for a ship model moving in heave and pitch.
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The wave motion may be found by the application of a source distribution over the body
surface. There are three different routes which may be taken. The first one is to integrate the
integral equation directly through the singularity ([5], [6], [7], [13]), which can be performed
without difficulty. The second one is to develop the integral equation to a form without any
singularity [8] and the third one is to use a Green function which is non-singular atτ = 1

4
and approaches the ordinary Green function away from the singularity. Each of these methods
have their advantages and disadvantages. In the first method it is necessary to compute with
small steps close toτ = 1

4. In the second method the integral equation is somewhat more
complicated than in the first method. This method has, however, the merit that it includes
a proof that the solution is bounded at the critical point. These two methods fail for very
deep submergences of the body. The third method leads to a similar integral equation as the
first method, but is not singular forτ = 1

4. The solution is valid also for deep submergence.
The solution contains, however, a small parameterε, of order of the wave amplitude, and is
therefore not unique. It seems likely that the result is not sensitively dependent on the choice
of ε.

It is proved here in Section 4 that the motion is finite atτ = 1
4 also for a moving thin foil

(flat plate). Since the cross-section of this body is zero, this result is in contradiction to the
claim in [8] that the motion is bounded if and only if the cross-section area is non-zero. The
reason for this disagreement is that for a body of zero cross-section a distribution of vortices
(or normal dipoles) must be used instead of a distribution of sources. It also follows from
our proof that the motion atτ = 1

4 is finite for a thin two-dimensional foil of nonzero lifting
area since the motion in this case may be decomposed into a thickness and lifting problem.
Solution of the latter may be obtained by the procedure outlined here.
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